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Abstract

A technique for predicting polymer quality in batch polymerisation reactors using robust neural networks is proposed in this paper. Robust
neural networks are used to learn the relationship between batch recipes and the trajectories of polymer quality variables in batch polymerisation
reactors. The robust neural networks are obtained by stacking multiple nonperfect neural networks which are developed based on the bootstrap
re-samples of the original training data. Neural network generalisation capability can be improved by combining several neural networks and
neural network prediction confidence bounds can also be calculated based on the bootstrap technique. A main factor affecting prediction
accuracy is reactive impurities which commonly exist in industrial polymerisation reactors. The amount of reactive impurities is estimated
on-line during the initial stage of polymerisation using another neural network. From the estimated amount of reactive impurities, the effective
batch initial condition can be worked out. Accurate predictions of polymer quality variables can then be obtained from the effective batch
initial conditions. The technique can be used to design optimal batch recipes and to monitor polymerisation processes. The proposed techniques

are applied to the simulation studies of a batch methylmethacrylate polymerisation reactor.  © 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

Batch reactors are suitable for manufacturing high value
added specialty chemicals such as specialty polymers, phar-
maceuticals, and biochemicals. Optimal control of batch
polymerisation reactors have been stucdied by several
researchers (e.g., Refs. [1-8]). The main objective of these
optimal control strategies is to obtain a product with desired
physical and mechanical properties within a minimum time.
Optimal profiles of reactor temperature and/or initiator add-
ing policies are calculated based on first principles models of
polymerisation processes.

The development of detailed first principles models for
complex polymerisation processes is usual.y very time con-
suming and effort demanding. It is quite common for a com-
prehensive mechanistic polymerisation model to involve
dozens of differential and algebraic equations. Empirical
models based on neural networks can be used to ease the
effort in model development. Neural networks have been
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shown to be able to approximate any continuous nonlinear
functions (e.g. Refs. [9-11]) and have been applied to proc-
ess modelling and control (e.g., Refs. [12-15]).

A key issue in neural network based modelling is the net-
work generalisation capability. The neural network model
should perform reliably when applied to unseen data. Neural
network generalisation capability is mainly determined by
the network training method and training data. To build an
accurate neural network model, ideally the training data
should be abundant and cover a wide range of the system
input space. In many practical situations, the amount of train-
ing data is often limited due to the cost in conducting exper-
iments and the difficulties in measuring some physical
variables such as polymer quality variables. In batch poly-
merisation production, polymer quality variables including
the number average molecular weight and the weight average
molecular weight are usually measured through laboratory
analysis and, typically, only a very limited samples of these
measurements are made during a batch. When the amount of
training data is limited, a neural network model often tends
to over-fit the training data and result in significant errors
when applied to unseen data. To overcome the difficulty due
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to limited process data, Tsen et al. [ 16] propose to augment
experimental data by using an approximate mechanistic
model of the process. They used the first order Taylor series
expansion of the approximate mechanistic model to extrap-
olate around the experimental data. Augmented data are gen-
erated in this way. They applied this technique to polymer
quality control in a batch polymerisaton reactor. The limi-
tations of this approach are the need for an appropriate mech-
anistic model and the potential problem of the assumed linear
behaviour around the operating point.

Some neural network training techniques have been devel-
oped to improve network generalisation capability. One of
the techniques is training with regularisation [10,17]. The
aim of regularisation is to prevent unnecessarily large neural
network weights which can result in large prediction errors
on unseen data. The idea of regularisation has been widely
used in statistical mode! building and a variety of techniques,
such as ridge regression, principal component regression, and
partial least squares regression, have been developed. Neural
network generalisation capability can also be improved by
using a parsimonious network structure. Network pruning
techniques have been developed to remove unnecessary neu-
rons [18]. A sequential orthogonal training technique for
building parsimonious network using mixed types of hidden
neurons was proposed by Zhang et a.. [19]. An attractive
approach to improve neural network riodel robustness is to
develop a set of neural network models and combine them.
The combined neural network model is known as a stacked
neural network model {20-22]. In a stacked neural network,
the final model prediction is a combination of the predictions
from the individual neural networks.

In this paper, we propose a robust neural network based
technique for predicting trajectories of polymer quality var-
iables in batch polymerisation reactors from baich recipes.
Stacked neural networks are used to leamn the relationship
between batch recipes and the trajectories of polymerisation
quality variables. A practically very important aspect in poly-
merisation is the problem of reactive impurities. The eco-
nomic operation of polymer reactors requires to recover
unreacted monomers and solvent. The recovered monomer
and solvent are recycled back to polymerisation reactors. This
will inevitably introduce reactive impurities which are mainly
in the form of oxygen and traces of inhibitors. Reactive impu-
rities can rapidly consume free radicals and cease or slow
down the polymerisation process. When there exist reactive
impurities, the effective batch initial condition will be differ-
ent from that defined by the batch recipe. Predictions of pol-
ymer quality variables based on the nominal batch initial
condition will therefore possess significant errors. A neural
network based technique for estimating reactive impurities
has been developed by Zhang et al. [23]. The technigue can
accurately estimate the amount of reactive impurities during
the initial stage of a batch. Once the amount of reactive
impurities has been estimated, the effective batch initial con-
ditions can be worked out. Accurate predictions of trajectories
of polymer quality variables can then be obtained based on

the effective batch initial conditions. A batch polymerisation
reactor can be monitored and controlled based upon the pre-
dicted trajectories of polymer quality variables. If the pre-
dicted final polymer quality differs from the desired value
then appropriate control actions, such as varying reactor tem-
perature or varying batch ending time, should be taken to
prevent any off-specification products being produced. The
neural network model for predicting polymer quality can also
be used to design optimal batch recipes.

The paper is organised as follows. Section 2 discusses
neural network based process modelling. Problems in con-
ventional neural network modelling are discussed and stacked
neural networks are presented. Section 3 describes the pre-
diction of polymer quality using neural networks. Distur-
bance estimation is presented in Section 4. Application of
the proposed technique to a simulated batch polymerisation
reactor is presented in Section 5. Section 6 discusses opti-
mal batch recipe design based on neural network models.
Section 7 concludes this paper.

2. Neural network based process modelling
2.1. Multilayer feed forward neural networks

Neural networks have been shown to be able to approxi-
mate any continuous nonlinear functions (e.g., Refs. [9—
11]) and have been applied to nonlinear process modelling
and control recently (e.g., Refs. [ 12-15]). The most com-
monly used neural network architecture is the multilayer feed
forward neural network shown in Fig. 1. The basic feed for-
ward network performs a nonlinear transformation of the
input data in order to approximate the output data.

Inputs to a neural network are presented at the input layer.
The data from the input neurons is then propagated through
the network via the interconnections such that every neuron
in a layer is connected to every neuron in the adjacent layers.
It is the hidden layer structures which essentially define the
topology of a feed forward network. Each interconnection
has associated with it a scalar weight which acts to modify
the strength of the signal passing through it. The neurons
within the hidden layer perform two tasks: they sum the
weighted inputs to the neuron and then pass the resulting
summation through a nonlinear activation function. In addi-
tion to the weighted inputs to the neuron, a bias is included
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Fig. 1. A multilayer feed forward neural network.
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in order to shift the space of the nonlinearity. The output of
a hidden neuron can be represented as follows:

nh
S=Y (b+wi) (1)
i== 1
1
O = e 2
I+exp( —§) 2)

where b is a bias, [, is the ith input to the hidden neuron, w,
is the weight associated with I, and O is the hidden neuron
output. Eq. (2) is known as the sigmoidal neuron activation
function and its output is in the range (0, 1). Output layer
neurons can also use the sigmoidal activation function. How-
ever, for process modelling applications, output layers neu-
rons usually use the linear activation function since it can
give a wide range of outputs.

Network weights are such trained so thar the sum of
squared network prediction errors is minimised. The training
objective function can be defined as follows:

il
==Y (¥ —¥(1n) (3
vk
where N is the number of training data points, ¥ is the network
prediction, y in the target value, and ris an index of the training
data. The most commonly used network training method is
the back propagation training method {24], where network
weights are adjusted as follows.

aJ
AW(k+1)—aAW(k)~% 4
Wik+ D =Wk +AWE+ D (5)

In Eqs. (4) and (5), W(k) and A W(k) are the weight and
weight adaptation at the training step k, respectively, « is the
momentum coefficient, and 7 is the learning rate. Training
can be terminated when the error gradient is l2ss than a pre-
specified value, e.g., 107°. Training can also be terminated
by a cross validation based stopping criterion. When using a
cross validation based stopping criterion, data for building a
neural network model is divided into a training data set and
a testing data set. During network tratning, the network pre-
diction error on the testing data is continuously monitored.
Training is terminated when the testing error stops
decreasing.

Although in theory a neural network can approximate any
continuous nonlinear functions, a perfect reural network
model is usually very difficult, if not impossible, to build in
practice, especially when the amount of training data is lim-
ited. This is due to several factors. First, network training is
a nonlinear optimisation problem which is solved through
numerical search methods. There is no guarantee that the
global minimum will be reached and network training may
converge to a local minimum. Secondly, data collected from
an industrial process will inevitably contain measurement
noise. Over-fitting of noise can seriously deteriorate the net-

Fig. 2. A stacked neural network.

work generalisation capability and result in significant pre-
diction errors when the network is applied to unseen data,

2.2, Stacked neural networks

In recognition of the difficulties in building a perfect neural
network model, several researchers have recently shown that
a robust neural network model with improved generalisation
capability can be obtained by combining several nonperfect
neural network models (e.g., Refs. [20-22,25,26]). The
combination of muitiple neural networks results in a stacked
neural network.

A diagram for a stacked neural network is shown in Fig. 2,
where several neural network models are developed to model
the same relationship and are combined together. The indi-
vidual neural networks are trained using different training
data sets and/or from different initial weights. Instead of
selecting a single neural network model, a stacked neural
network model combines several neural networks to improve
model accuracy and robustness. The overall output of the
stacked neural network is a weighted combination of the
individual neural network outputs. This can be represented
by the following equation.

FX) = Yw fi(X) (6)
i=1
where f{X) is the stacked neural network predictor, f,(X) is
the ith neural network predictor, w, is the stacking weight for
combining the ith neural network, n is the number of neural
networks, and X is a vector of neural network inputs.
Stacking weights can be determined in a number of ways.
A simple approach is to take equal weights for the individual
networks and the stacking weights are all at 1/n. Another
approach to obtain the stacking weights is through multiple
linear regression. However, this approach has problems due
to the severe correlation among the individual predictors.
Since each network is developed to model the same relation-
ship. these networks are usually highly correlated. We found
that obtaining stacking weights through multiple linear
regression does not give good performance. This was aiso
experienced by Breiman [27] and he suggests to put a con-
straint on the stacking weights such that they are nonnegative.
Since the individual neural networks are highly correlated,
appropriate stacking weights could be obtained through prin-
cipal component regression (PCR) [22].
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Let y be a vector of the expected model outputs and §, be
a vector of the predictions from the ith neural network pre-
dictor. Predictions from a set of n predictors can be put in a
matrix as follows,

?:[flfz'”ﬁn] (7

where each column corresponds to an individual predictor.
The vector of predictions from the stacked neural network
model, § ., can be represented as

A
Ystack = YWY

wy +walh L wy, (8)

I

The matrix Y can be decomposed into the sum of a series
of rank one matrices through principal component
decomposition.

Y=0,pl+npi+.. . +6,p] (9)

In the above equation, ¢; and p, are the ith score vector and
loading vector, respectively. The score vectors are orthogo-
nal, likewise the loading vectors, in addition they are of unit
length. The loading vector p, defires the direction of the
greatest variability and the score vector t,, also known as the
first principal component, represents the projection of each
column of ¥ onto p,. Thus, the first principal component is
that linear combination of the colurans in ¥ explaining the
greatest amount of variability (¢, = ¥p,). The second prin-
cipal component is that [inear combination of the columns in
v explaining the next greatest amount of variability
(t,= f(pz) subject to the condition that it is orthogonal to the
first principal component. Principal components are arranged
in decreasing order of variability explained. Since the col-
umns in Y are highly correlated, the first few principal com-
ponents can explain the majority of variability in \'d

Through PCR, the stacked neural network model output is
obtained as a linear combination of the first few principal
components of Y. Suppose that the first k principal compo-
nents are used in PCR and they are denoted by T, and
T,=YP,, where P,=(p, P»...pi]. then the stacked neural
network model can be represented as

Vi =T,0=YP 0O (10)
The least squares estimation of 8 1is:

b= (T{Ty " 'Tly=(PIYY Py "' FYTy (1
The stacking weight vector w calculated through PCR is

then

w=Pb=P(PIYYP) 'PIYTy (12)

We have found that the weights d2termined from PCR give
very good performance. The number of principal components
used can be found through cross validation. Different num-
bers of principal components are studied and the resulting
model errors on testing data are compared. The number of
principal components used is then determined based on the
model errors on the testing data.

The method for building a stacked neural network model
is summarised as follows. Firstly, data for building neural
network models are re-sampled to form different training data
sets. Bootstrap re-sampling [28} with replacement can be
used. The idea of bootstrap is to suppose that a cumulative
distribution function (CDF) £, calculated from an observed
sample X, ..., X,, is sufficiently like the unknown CDF F so
that one can use a calculation performed using F, as an esti-
mate of the calculation that we would like to perform using
F. Distribution of the training data obtained through bootstrap
re-sampling is similar to the original data distribution. Sec-
ondly, a neural network model is developed for each set of
training data. Finally, the individual networks are combined
together through PCR.

A problem in industrial applications of neural network
models is the current lack of model prediction confidence
bounds. The bootstrap re-sampling techniques can be used to
estimate the standard errors of model predictions [28,29].
Based on the estimated standard errors, coufidence bounds
for neural network model predictions can be calculated. Neu-
ral network prediction confidence bounds give the process
operator extra information about the predictions. The process
operator can accept or reject a particular prediction from a
neural network model by using the associated prediction con-
fidence bounds.

Tibshirani [29] compared several error estimates for neu-
ral network models. These error estimate methods including
the delta method [28], the sandwich method [30], and the
bootstrapping method. It is shown that the bootstrapping
method gives better estimate than other methods. The boot-
strapping method for calculating neural network prediction
confidence bounds is summarised as follows.

Step 1. Generate B samples, each one of size n drawn with
replacement from the n training observations {(x, y,), (x,,
¥2)s ooy (X ¥,) ). Denote the bth sample by {(x7, ¥7), (x5,
YL ()

Step 2. For each bootstrap sample £=1, 2, ..., B, train a
neural network model. Denote the resulting neural network
weights by W*.

Step 3. Estimate the standard error of the ith predicted value

by
1 B 1/2
—_— oWy Y uiys )12
{B",Z:’.U(x" W) =y(x; )] }

where y(x;: -) =L y(x; W*)/B.

Step 4. Calculate the 95% confidence bounds by taking
plus and minus 1.96 times the standard error of the mean of
the predicted values.

3. Prediction of polymerisation trajectory

The dynamic model for a batch polymerisation reactor can
be represented in the form of a nonlinear state space model
as follows.
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dx/dr=Ff(x(t) u(r)) (13)
y()=g(x(1)) (14)

where x is a vector of state variables, y is a vector of polymer
quality variables, and u is a vector of controls which are
specified by the batch recipe. Egs. (13) and (14) can be
derived based on polymerisation kinetics, méterial balance,
and energy balance. Due to the complexity in polymerisation
kinetics, Egs. (13) and (14) are generally very complicated
and involves a large number of reaction censtants which
depend on some process variables such as the reactor tem-
perature. Hence it is very effort demanding to develop such
a complex first principles model. The calculation of polymer
quality variables based on Egs. (13) and (14) involves the
numerical integration of a large number of differential equa-
tions. Furthermore, long term prediction of polymer quality
variables will involve numerical integration over a long time
period since many intermediate state variables are not meas-
ured. Errors due to the inaccuracy of certain model parameters
can accumulate to a significant level when taking numerical
integration over a long time interval. To overcome these
problems, a stacked neural network is used to build a model
which links the batch recipe, I/, with a trajectory of polymer
quality variables, y(1),1=1,2, ..., n.

Let Y=1[y,¥:...¥.] be n points from the trajectory of a
polymer quality variable, for example, the number average
molecular weight. When there are no disturbances, Y is
mainly determined by the batch recipe, U. Given the experi-
mental data to a number of batches, it is possible to learn the
relationships between U and Y using a neural network, The
neural network model for predicting ¥ from U has the follow-
ing form:

Y=p(U) (15)

where p(} is a nonlinear function represented by a stacked
neural network. Once a network has been trained to model
the relationships between U and 7, it can be used to predict
Y from U.

4. Disturbance estimation

The economic operation of a polymerisation process usu-
ally requires that unreacted species be recovered and recycled
back into the process [31]. Associated with the recycle of
solvent and unreacted monomers is also the recycle of reac-
tive impurities which are introduced into the system in the
fresh feed or as a by-product of chemical reactions. The levels
of reactive impurities can be built up to the point where the
reacting system is severely affected. Almost &l types of poly-
merisation are sensitive to reactive impurities, In polymeris-
ation processes, reactive impurities are usually traces of
inhibitors or oxygen. The studies in Ref. [32] show that
impurities in an emulsion system consume rapidly reactive
free radicals, thus, preventing particle generation and reduc-
ing the growth of any polymer particles already present. Since

reactive impurities can rapidly consume free radicals. their
effect can generally be represented by a step decrease in
initiator concentration or initiator efficiency [33}. The gross
initial initiator weight can be expressed as the sum of the
effective initiator weight and the amount of impurities as
follows:

Iy =1+ Al (16)

where I, , is the gross initial initiator weight, I, is the effective
initial initiator weight, and A/, is the amount of impurities.

When there exist reactive impurities, the effective batch
initial condition will be different from the nominal initial
condition defined by the batch recipe. Predictions of polymer
qualities based on the nominal initial condition could posses
significant errors when there exist reactive impurities. Accu-
rate predictions of polymer qualities can only be obtained
when the amount of reactive impurities can be estimated. A
neural network based technique for the estimation of reactive
impurities has been developed by Zhang et al. [23]. The
techniques can accurately estimate the amount of reactive
impurities during the early stage of polymerisation.

In this method, a neural network based inverse model
which maps a trajectory of monomer conversions to the cor-
responding initial initiator concentration is developed. The
neural network model takes the following form.

fo=f(T, X(1)), X(£2), -, X(£,)) (17)

where 1, is the initial initiator weight, T is the reactor tem-
perature, X(¢,) to X(1,) are n discrete points in the monomer
conversion trajectory during the early stage of a batch. Given
a set of conversion measurements, the neural network niodel
can be used to estimate the effective initial initiator weight.
In this case, the amount of impurities is estimated as the
difference between the gross initial initiator weight and the
estimated effective initial initiator weight.

5. Application to a batch MMA polymerisation reactor
5.1. The batch polymerisation reactor

The batch polymerisation reactor studied in this paper is a
pilot scale polymerisation reactor developed in the Depart-
ment of Chemical Engineering, Arisiotle University of Thes-
saloniki, Greece. The batch polymerisation reactor is shown
in Fig. 3. The free-radical solution polymerisation of meth-
ylmethacrylate ( MMA) is considered in this paper. The sol-
vent used is water and the initiator used is benzoyl peroxide.
The jacketed reactor is provided with a stirrer for thorough
mixing of the reactants. Heating and cooling of the reaction
mixture is achieved by circulating water at appropriate tem-
perature through the reactor jacket. The reactor temperature
is controlled by a cascade control system consisting of a
primary PID and two secondary PID controllers. The reactor
temperature is fed back to the primary controller whose out-
put is taken as the setpoint of the two secondary controllers.
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Fig. 3. A batch polymerisation reactor.

The manipulated variables for the two secondary controllers
are hot and cold water flow rates. The hot and cold water
streams are mixed before entering the reactor jacket and pro-
vide heating or cooling for the reactor. The jacket outlet
temperature is fed back to the two secondary controllers. A
simulation programme is developed and is used to test the
techniques developed in this paper.

5.2. Prediction of batch polymerisation trajectories

In this reactor, batch recipes mainly include the reactor
temperature setpoint and the initial initiator concentration.
Neural network models are developed to predict trajectories
of monomer conversions (X), number average molecular
weights (Mn), and weight average molecular weights (Mw)
from initial batch recipes. In this reactor, the nominal batch
time is from 2 to 3 h. Polymer quality variables at 60, 80,
100, 120, 140, 160, and 180 min from the start of a batch are
predicted from neural network models. A stacked neural net-
work is developed for each of these time instant and it has
two inputs and three outputs. The two network inputs are
reactor temperature setpoint and the initial initiator concen-
tration while the three network outputs are Mn, Mw, and X.

To generate training and testing data, 30 batches were
simulated with batch recipes generated through Monte-Carlo
simulation. For each batch, polymer quality variables at the
seven discrete time instants were collected. To make the sim-
ulation close to reality, measurement noises are added to the
polymer quality variables and they are in the ranges | — 3000
g/mol, 3000 g/mol], [ —6000 g/mol, 6000 g/mol], and
[ — 1%, 1%] for Mn, Mw, and X, respectively. Bootstrap re-
sampling with replacement [28] were used to generate 50
replica of the data set. For each re-sampled data set, 80% of
the data points were randomly selected as training data while
the remaining serve as testing data. A single hidden layer feed
forward neural network was developed for each of the re-
sampled data set. Each network confains 15 hidden neurons
and the network weights were initial:sed as random numbers
in the range ( —0.1, 0.1). Networks were trained using the
Levenberg-Marquardt optimisation [34] algorithm with
regularisation. Training is terminatec using a cross validation
based ‘early stopping’ rule. During network training, the
training algorithm continuously checks the network error on
the testing data. Training is terminated at the point where the
network error on the testing data is at its minimum. Early

stopping is an implicit way to implement regularisation which
can improve network robustness [35].

The 50 individual networks were combined together
through PCR. A further 20 batches were generated as unseen
validation data to test the reliability of the developed neural
network models. Figs. 4 and 5 show the predicted and sim-
ulated polymer quality variables at 100 min and 160 min,
respectively, on the 20 unseen validation batches. The 95%
confidence bounds for the predictions are also shown. In
Figs. 4 and 5, the simulated polymer quality variables are
represented by ‘0’, the predicted values from the stacked
neural networks are represented by ‘+°, and the 95% confi-
dence bounds are represented by the dash—dot lines. It can be
seen that predictions are very accurate. The prediction con-
fidence bounds give the process operator extra information
on how confident the predictions are. Based on the confidence
bounds, the process operator can accept or reject a particular
prediction from a neural network model. Fig. 4 shows that
the prediction confidence bounds are quite narrow for all the
20 batches indicating that these predictions are reliable. Fig. 5
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shows that the prediction confidence bounds for batches 12
to 15 are quite wide indicating the lack of confidence in these
predictions. The process operator should therefore treat these
predictions with care.

For the purpose of comparison, single neural network mod-
els were also developed to predict polymer quality variables.
Seven single neural network models were developed to pre-
dict polymer quality variables at the above mentioned time
instants. Each of these networks has 15 hidden neurons and
network weights were initialised as random numbers in the
range ( —0.1, 0.1). These networks were trained using the
Levenberg-Marquardt optimisation algorithm with regular-
isation. Data from the first 30 batches were partitioned into a
training data set and a testing data set. Data from the first 20
batches were used as training data while data from the remain-
ing 10 batches were used as testing data. During network
training, the training algorithm continuously checks the net-
work error on the testing data. Training is terminated at the
point where the network error on the testing data is at its
minimum. Figs. 6-8 compare the scaled sum of squared errors

SSE for Mn

I Stacked net
M Single net

Time {minutes)
Fig. 6. Scaled SSE in predicting Mn on the validation data.

SSE for Mw

(1 8tacked net
o Single net

Time (minutes}

Fig. 7. Scaled SSE in predicting Mw on the validation data,

SSE for X

O Stecked nat |

WSinge nat |

L

Thns {minutes)
Fig. 8. Scaled SSE in predicting X on the validation data.

{SSE) of the stacked neural network models and the single
neural network models on the 20 unseen validation batches.
It is clearly indicated that the stacked neural network models
perform much better than the single neural network models.

5.3. A case study

Consider a batch with the following nominal recipe: the
reactor temperature setpoint is 351 K and the initial initiator
weight is 2.5 g, Reactive impurities were added to this batch
and their amount was arbitrarily taken as 0.83 g. Without
knowing the existence of reactive impurities, predictions of
polymer qualities based on the nominal batch recipe possess
significant error as can be seen from Fig. 9. In Fig. 9, simu-
lated process measurements are represented by ‘o’, neural
network predictions based on the nominal batch recipe are
represented by “*°.

To detect and estimate the amount of reactive impurities
during the early stage of a batch, monomer conversion ‘meas-
urements’ at 15, 20, 25, and 30 min from the batch start were
collected, Using the technique presented in Section 4, the
existence of reactive impurities was detected and theiramount
was estimated as 0.87 g, which is very close to the true amount
of reactive impurities. Deducting this amount of reactive
impurities from the nominal initial initiator weight, the effec-
tive initial initiator weight is then estimated as 1.63 g. Neural
network predictions of polymer qualities based on this effec-
tive initial initiator weight are shown in Fig. 9 where they are
represented as ‘+ . It can be seen from Fig. 9 that the pre-
dictions based on the effective initial initiator weight are very
accurate. This demonstrates that the neural network based
polymer quality prediction technique, when combined with
the impurity estimation technique, can accurately predict tra-
jectories of polymer quality variables even in the presence of
an arbitrary amount of reactive impurities.

x 10° o:simulation; “:NN1; +:NN2
2 T T
g1 2 ®
=218 ® ® i
Py * % x M $ M
= * *
o : L
50 100 150 200
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8 x 10 . .
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R L. ’ |
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Time {min.)

Fig. 9. Predicted polymerisation trajectories.
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6. Optimum recipe design

The proposed technique can be used to design optimum
batch recipes. The objective in operating batch polymerisa-
tion processes is to produce polymer products with desired
quality and high monomer conversion at a minimum time,
This can be expressed as the following, objective function:

J=w (Mn(t;)/Mnyg— 1)+ w,(Mw{1;)/
Mwy— D2+ wy(X(#) — 12+ wr; (18)

where 1, is the batch ending time, Mn, and Mw, are the desired
number average molecular weight and weight average molec-
ular weight, respectively, X is the monomer conversion, and
w, to w, are positive weighting factors. Let U denotes the
batch recipe, then the optimum batch recipe and batch ending
time can be found by solving the following optimisation
problem:

min J (19)
U.

In this study, the weights w, to w; are all selected as one
and the weight w, is selected as 0.001 h™". Since the devel-
oped neural network models predict polymer qualities at 60,
80, 100, 120, 140, 160, and 180 min from the batch start,
these time instance are considered as the possible batch end-
ing time. Optimisation is then performed for each of these
possible batch ending time. The optimal batch recipe and
batch ending time are selected as these which minimise the
objective function.

Consider the following example where Mn, and Mw, are
2.8 X 10° g/mol and 8 X 10° g/ mol, respectively, correspond-
ing to a particular grade of polymer product, Optimisation
results for the seven possible batch ending times are presented
in Table 1. Among these, the batch ending time of 120 min
and its corresponding recipe give the smallest objective func-
tion value. The optimal recipe was used in simulation and the
resulting trajectories of polymer quality variables are pre-
sented in Fig. 10. It can be seen from Fig. 10 that the final
product has the desired quality. Tablz 1 also indicates that
for the production of this particular grade of product, faster
reactions can be achieved through higher temperature and
lower initiator concentration.

The proposed technique can also be used for the monitoring
of batch polymerisation reactors. Given a batch recipe, tra-

Table 1
Optimum batch recipes

£ {min) J 7, (K} Iy (g)
60 0.03%4 350.29 1.09
80 0.0380 344.86 1.52
100 0.0382 340.85 2.02
120 0.0378 337,77 25
140 (3.0489 3307 2.5
160 0.0719 33643 2.5
180 0.0804 33603 25
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Fig. 10. Polymetisation trajectories under the optimum batch recipe.

jectories of polymer quality variables can be predicted. A
batch ending time can be determined based on these predic-
tions. When there exist reactive impurities, the nominal batch
ending time will be inappropriate. Based on the estimated
amount of reactive impurities, trajectories of polymer quality
variables can be predicted. Process operators can then antic-
ipate the final product qualities and determine a suitable batch
ending time.

7. Conclusions

Robust neural networks are used to predict trajectories of
polymer quality variables in batch polymerisation from batch
recipes. The robust neural network is obtained by developing
several neural networks from bootstrap re-sampled training
data and combining them. By this means, neural network
generalisation capability can be significantly improved. The
technique only requires a small amount of process operation
data which can be accumulated during previous operations.
By using neural networks to learn the relationship between
batch recipes and polymerisation trajectories, the develop-
ment of complex polymerisation kinetic models is avoided.
The problem of numerijcal integration of a large number of
complex differential equations over a long time period is also
avoided.

The effect of disturbances, mainly in the form of reactive
impurities, is considered in the proposed technique. Several
conversion measurements are taken during the initial stage
of a batch to estimate the amount of reactive impurities. A
stacked neural network is used to estimate the amount of
reactive impurities. From the estimated impurities, the effec-
tive amount of initial initiator can be calculated. Application
of the proposed technique to a simulated batch MMA poly-
merisation reactor demonstrates that the technique can accu-
rately predict trajectories of polymer quality variables even
with the presence of reactive impurities. The technique has
been used in designing optimum recipes for a batch poly-
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merisation process. It can also be used for the prediction,
control, and monitoring of batch polymerisation processes.
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